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Rebbi's multispin coding technique is improved and applied to the kinetic Ising 
model with size 600 * 600 * 600. We give the central part of our computer 
program (for a CDC Cyber 76), which will be helpful also in a simulation of 
smaller systems, and describe the other tricks necessary to go to large lattices. 
The magnetization M at T =  1,4 * T c is found to decay asymptotically as 
exp( -  t/2.90) if t is measured in Monte Carlo steps per spin, and M ( t  = O) = 1 
initially. 

KEY WORDS: Monte Carlo; Glauber kinetic Ising model; Multispin cod- 
ing; CDC computers. 

1. RNTRODUCTION 

The Ising magnet on a simple cubic lattice serves as a model for many 
cooperative phenomena. Its simulation on a computer uses the Metropo- 
lis Monte Carlo method, (1) usually with Glauber kinetics. (~) Rebbi and 
co-workers (2) improved the efficiency of this computer simulation by 
"multispin coding"; a complete program was published by Zorn et al., (2) 
and was further improved by Ottavi and Chakrabarti et a/. (4) These latter 
authors used it also for a simulation of large lattices up to 360. 360.  360. 
The present work started from the program used in that paper, (4) reduced 
its computer time by about 40%, and applied it to larger systems. Basically 
we made a feasibility study only; the application to unsolved problems is 
left for the future. 

In CDC 6000 and 7000 series computers each memory unit ("word") 
has 60 bits; in a (spin-I/2) Ising model, one bit is sufficient to represent a 
single spin. Multispin coding allows three bits for every spin and thus 
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makes it possible to count the number of antiparallel neighbor spins, from 
zero to six in the simple cubic lattice, with these three bits. Thus 20 spins 
(or 20 interaction energies) can be stored in one word and calculations for 
these can be made with one word-oriented instruction. Therefore, com- 
pared with conventional one-word-per-spin methods, O) the memory re- 
quired is reduced by a factor of 20, the computer time by a factor of 2 
(Zorn et al.(2)). Basically the program performs an exclusive-or operation 
(XOR) between a word representing 20 spins and their neighbors; the result 
gives in each of the 20 three-bit parcels the number of antiparallel neigh- 
bors, (2) and thus the interaction energy. Thereafter each spin has to be 
flipped separately according to the probability with a random number 
(FORTRAN function RANF) distributed homogeneously between zero and 
one. (For computers with 32-bit words, the advantages of multispin coding 
are less drastic.) 

In the following section we describe the tricks to speed up computation 
in our CDC Cyber 76 M and include a list of that part of the program. 
Section 3 describes how a hierarchy of three storage devices is used for the 
simulation of systems larger than 100. 100.100. Section 4 gives and 
discusses our results. 

2. THE CENTRAL ALGORITHM 

For each Monte Carlo step per spin, the computer program examines 
regularly every spin with coordinates i, j ,  k and flips and checks if it should 
be flipped (i, j ,  k = 1, 2 , . . . ,  L). The outermost loop with variable K is left 
out in our program listing for simplicity (see Section 3), the second loop 
(DO 1 J = 1, L) starts our program listing in Table I. As the reader may 
see, periodic boundary conditions were employed. The innermost loop is 
reduced to a loop over LL  = L / 2 0  steps only, since in multispin coding we 
will treat with H = I  the 20 spins I = 1 ,  I + L L ,  I + 2 * L L  . . . . .  1+ 
19*LL, with H = 2 the 20 spins I = 2, 2 + LL, 2 + 2*LL . . . . .  2 + 19*LL, 
until finally with 11= L L  we treat the 20 spins I =  LL,  2*LL,  
3*LL . . . . .  20*LL(= L). The two statements after labels 10 and 11 incor- 
porate the special cases H = I and H = LL, where the left or right 
neighbors in the lattice row are not characterized by H _ 1 but have to be 
formed by shift operations. O) Essentially we first calculate, apart from 
differences due to periodic boundary conditions, the sum of the six neigh- 
bors and the central spin: 

IEN = I S ( I I -  1 ,J ,K)  + I S ( I I  + 1 , J ,K)  + IS ( I I ,  J -  1,K) 

+ IS( I I ,  J + 1,K)  + IS ( I I ,  J , K -  1) + IS( I I ,  J , K  + 1) 

For reasons of programming technique we denote K + 1 and K -  1 by the 
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Table I. Central Part of Computer Program, Showing for One Sweep through 
the Lattice the Loops in Two of Three Dimensions in the L ,  L �9 L Lattice a 

D O 1 J = I , L  
JP1 = J + 1 $ IF(JP1.GT.L) JP1 = 1 
JM1 = J - 1 $ IF(JM1.EQ.0) JM1 = L 
D O I I I = I , L L  
IF(II.EQ.1) GOTO 10 
IF(II.EQ.LL) GOTO 11 
IEN = ISC(II + 1, J) + ISC(II - 1, J) 
GOTO 12 

10 CONTINUE 
IEN = ISC(2, J) + SHIFT(ISC(LL, J), 57) 
GOTO 12 

11 

12 

C 
C 
C 

2 
C 

C 
1 

CONTINUE 
IEN = ISC(LLM 1, J) + SHIFT(ISC(1, J), 3) 
ICI = ISC(H, J) 
IEN = IEN + ISC(II, JM1) + ISC(II, JP1) + 

IS(II, J, PLLCMU) + IS(II, J, PLLCML) + ICI 
IEN = XOR(ICI.OR.SHIFT(ICI,  1).OR.SHIFT(ICI, 2), IEN) + IEN1 
IEN COUNTS FOR THE 20 SPINS IN ICI HOW MANY OF THEIR 
NEIGHBORS ARE ANTIPARALLEL TO THEM (EXCLUSIVE OR) 
ICH MARKS THOSE SPINS WHICH HAVE TO BE FLIPPED 
ICH = 0 
D O 2 J I =  1,10 
IF(RANF(J1).LE.EX(IEN.AND.7)) ICH = ICH.OR.7 
ICH = SHIFT(ICH, 3) 
IEN = SHIFT(IEN, 3) 
IF(RANF(J1).LE.EX(IEN.AND.7)) ICH = ICH.OR.7 
ICH = SHIFT(ICH, 3) 
IEN = SHIFT(IEN, 3) 
SHIFT PRODUCES A CIRCULAR SHIFT TO THE LEFT BY 3 BITS 
ICI = ISC(II, J) = XOR(ICI, ICH.AND.IEN1) 
M = M + COUNT(ICI) 
COUNT COUNTS THE N U M B E R  OF SET BITS IN A C OMPUTER  W O R D  
CONTINUE 

a RANF is a random number generator and EX(n) the probability to flip a spin if n - 1 of 
its neighbors are antiparallel. Basically, PLLCMU = K -  1 and PLLCML = K + 1 if the 
investigated plane K is stored in ISC(H, J) .  This part can be applied to smaller systems, at 
least L = 60. IEN1 adds unity to every 3-bit parcel. 

i n t e g e r  " p l a n e - i n - l a r g e - c o r e - m e m o r y  ( L C M ) "  v a r i a b l e s  P L L C M L  a n d  

P L L C M U  ( s e e  S e c t i o n  I I I ) ,  a n d  w e  s t o r e  c e n t r a l  p l a n e  K a l s o  i n  s m a l l - c o r e -  

m e m o r y ,  t h e  u s u a l  w o r k i n g  s t o r a g e ,  a s  a c o p y  o f  t h e  p l a n e  K r e s i d e n t  i n  

L C M ,  s u c h  a s  w e  c a n  r e f e r e n c e  IS(H,J,K) b y  I S C ( H , J ) .  I C I  is a n  

a b b r e v i a t i o n  (3~ f o r  IS(II, J, K). 



642 Kalle and Wlnkelmann 

The crucial statement 

IEN = XOR(ICI.OR.SHIFT(ICI, 1).OR.SHIFT(ICI, 2), IEN) + IEN1 

gives in every 3-bit group the number of antiparallel neighbors of the 
central spin in ICI, as the reader may check in an example. [The two 
"OR"-operations give 111 for every up spin (001) and 000 for every down 
spin (000).] This method works if each spin interacts with six neighbors and 
has to be modified for different numbers of interacting neighbors. The 
addition of IEN1 to this result adds unity to every number of antiparallel 
neighbors; this IEN1 has 001 in each of its 20 3-bit parcels. Earlier 
work (2-4) used an XOR operation for each of the six directions of interac- 
tion, which is less effective. 

The statements "IF (RANF(J1).LE.EX(IEN.AND.7)) ICH = ICH. 
OR.7" will result in ORing a 7 (= 111) to the changer word ICH if the spin 
has to be flipped, and a 000 otherwise. Since the number of hardware 
registers in the computer is exhausted by this loop construction, it was not 
useful to mark spins to be flipped by an additional constant 1 (= 001), 
which would be more convenient for the flip process. In contrast to earlier 
work [2-4], we investigated two spins during one trip of loop labeled 2, 
since the small number of instructions allows the loop still to reside in the 
Cyber 76 instruction stack. In order to get a feeling for the time consumed 
in this loop, the reader may consider that each machine instruction in this 
innermost loop will be executed 216.000.000 times for each Monte Carlo 
step per spin (600* 600* 600 system). The cycle time of a Cyber 76 
computer is 27.5 nsec, thus to save one cycle's time in this loop means 
saving 5.8 sec per Monte Carlo step. So we took great care to optimize the 
code of this loop. Thereafter the statement ICI = XOR (ICI, ICH. 
AND.IEN1) produces the changed spin word; and finally M = M + 
COUNT(ICI) counts the number of spins 001 in the changed configuration 
and so gives the magnetization more simply than in earlier versions. 

We found that in our test runs for 240**3 the CPU time for one 
Monte Carlo step was reduced to 14 sec compared with 22 sec in the 
program of Chakrabarti et a/. (4) given to us. For the 600**3 system we 
needed less than 230 sec for one sweep through the lattice. Another factor 
of 3 can be gained in speed if one takes e x p ( - 4 J / k  B T) = 1//2 correspond- 
ing to T / / T  c = 1.279 and treats 20 spin flips simultaneously (5) . 

3. HIERARCHY OF MEMORIES FOR VERY LARGE SYSTEMS 

Chakrabarti et a/. (4) used already disk storage to store larger systems 
up to 360**3, with test runs up to 600**3. Information to and from the disk 



Monte Carlo Technique for Very Large Islng Models 643 

storage can  be transferred asynchronously by the FORTRAN " B U F F E R  IN" 
a n d " B U F F E R  OUT" statements; using this method a program may 
perform computation and input /output  at the same time. We corrected an 
error in the given program (4), due to which parts of the boundary spins 
were always down, and further refined the method. 

We used the three available types of memory in a strongly hierarchical 
way: SCM, the small-core memory; LCM, the large-core memory; and 
RMS, the disk storage system. As mentioned above, the plane K is stored 
with dimension ISC(LL, L) in SCM, this plane K, its neighbors K + 2, 
K + 1, K -  1 and the first plane K = 1 are stored in direct access LCM 
("LEVEL 2") in the area IS(LL, L, 5). Information between SCM and 
LCM was transferred by the fastest possible method, the block copy 
(FORTRAN "MOVLEV" routine). The third index n of IS(H,J,n) was 
denoted as n = PLSCM for the central plane K, as n = PLLCMU for the 
upper neighbor plane K -  1, n = PLLCML for the lower neighbor plane 
K + 1, and n = PLLCMI for the input plane K + 2 read in from disk 
storage. 

At this point, it may be interesting to the reader, in order to under- 
stand the following, to learn a little about single-word access to LCM in the 
Cyber 76 computer. 

If a program references a word in LCM this and the following 15 
words are read from core into a hardware register. Successive references to 
words following that word are satisfied from that register, which is quite 
fast. So only every 16 times a real storage access is required, if consecutive 
words are read using single-word access to LCM. This is the clue to make 
LCM access fast. Since the minimum LCM configuration consists of two 
banks of LCM, each having such a hardware register, this configuration is 
presently available at the Cologne Cyber 76, the only possibility to use 
LCM in the fastest way is to read the PLLCML plane using one bank and 
to read the PLLCMU plane using the other bank. Thus computation time 
is optimal if the product of LL = L/20 and L is an odd multiple of 16, 
allowing L = 200, 280, 360, 440, 520, 600, and 680 for the Cologne 
configuration. (L = 120 and smaller systems can be computed without 
RMS usage.) 

All L planes are stored on RMS, accessed by " B U F F E R  IN" and 
"B U F F E R  OUT" statements. We did not test if we could fit 680**3 into 
the disk storage system under normal multiuser conditions; for 600**3 we 
consumed already nearly one fifth of the total available RMS space, that is 
about 20 million (60-bit) words. (One may save memory by a factor of 3, 
losing in speed by a factor of 1.6, if one compresses three 20-spin words 
into one before storing them on the disk. Only test runs were made, 
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however. (5)) It is not sufficient to store only the planes K - 1 and K + 1 in 
LCM, because, as we mentioned above, we want to do asynchronous 
input/output ,  so during the time the lowest plane K + 2 is read in from 
RMS by " B U F F E R  IN," the plane K + 1 is already needed for computa- 
tion, and during the time the uppermost plane K -  1 is output to RMS, its 
LCM storage can be used by spins of the upper plane. Table III explains 
this usage of plane indices. Effectively three processes are done at a time: 
input of a new plane, computation, and output of an already newly 
computed plane. 

When we have investigated one plane, we move to the lower neighbor- 
ing plane not by shifting the spins IS(H, J, n) within storage but merely by 
rotating the pointers (third index n), e.g., setting PLSCM = PLLCML. If 
these variables are set up as P L L C M U - - 4 ,  PLSCM = 2, PLLCML = 1, 
and PLLCMI = 3 the single-word access to LCM via the two banks is used 
best. Table II indicates schematically the way the information is shifted 
between memories. Additional statements are required for the special cases 
K - - 1 ,  K - - L - 1 ,  K - - L ,  K =  L + 1 and during the first Monte Carlo 
sweep through the lattice. After each such Monte Carlo step per spin, the 
magnetization (M- L**3/2)/L**3 is printed along with other useful 
information. 

To protect the computation against a breakdown of the computer, the 
(very limited) output was also printed on the dayfile (which is usually not 
lost), and the RMS information was saved for later reuse. Thus we could 

Table II. Schematic Listing of Storage Handling Statements 

M = - L3/2 
D O 8 K =  1, L 
CALL MOVLEV(IS(I,  1, PLSCM), ISC(1, 1), LLL) 

Computat ion as in Table I 

C 
CALL MOVLEV(ISC(1, 1), IS(I, 1, PLSCM), LLL) 

MOVE SCM PLANE BACK TO LCM 
SCRATCH = P L L C M U  
PLSCM = PLLCML 
PLSAVEI = PLLCMI 
PLLCML = PLONE 
PLLCMI = SCRATCH 
B U F F E R O U T  (OTAPE, 1) (IS(l, 1, PLLCMU),  IS(LL, L, PLLCMU))  
B U F F E R I N  (ITAPE, 1) (IS(l, 1, PLLCMI),  IS(LL, L, PLLCMI))  
C O N T I N U E  
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Table III. Sketch of Plane Index Usage for Asynchronous Disk Input/Output 
during Computation 

Disk storage 

Disk storage 

PLLCMU (output) 

PLSCM (used in SCM) 

PLLCML 

PLLCMI (input) 

645 

stretch the calculation over an extended period of time, and were not 
forced to compute all steps during one long run. No special arrangements 
with the general operating system were necessary, our program ran under 
usual conditions, as did numerous other programs at that time. 

4. R E S U L T S  

Figure 1 shows that the magnetization after t Monte Carlo steps per 
spin at a temperature 40% above the critical temperature. We see that the 
magnetization decays for large t as e x p ( -  t/~') with ~- = 2.90, until finally 
fluctuations take over. This decay is seen here much better than in Ref. 4, 
either due to an unfortunate fluctuation there or due to the above- 
mentioned programming error in Ref. 4. For  small times, deviations occur 
as expected. For the initial slope - dM/dt [at t = 0, M(t = 0) = 1] is equal 
to the probability of flipping one spin down when all neighbor spins are up. 
That  probability remains finite at the critical temperature whereas 1/-r 
vanishes there (4) . [The flip probability was taken as 

e-flag~(1 + e -Bae) 

where fl = 1/kaT and AE is the energy change of the flip.] 
Thus we have simulated the decay of magnetization in a very large 

Ising lattice on a general-purpose computer under normal operating condi- 
tions, using less than four minutes central processor time for every Monte 
Carlo step per spin in a 600*600*600 lattice. While we used many features 
special to large CDC computers, the whole program was written in FOR- 
TI~N. It remains to be seen what new results can be obtained from large 
systems; for this purpose we can send our complete program (200 state- 
ments) to the interested reader. 
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11 II  III Tl 

TI ?I / IT  TI 
TI TI 15 I I I  
T Z I I T I I l  I Y I I I r  ~ T I I I T  

UKLN 5COPE ~ . | ; 5  LVL 5]Jaa . 28/0910~ 2 1 . R 7 . I a . .  ~ A t O P t ~  ~2~}5 

SYS OLYIC~S e~41 71P~ F~5~377k FLLI~B~eK HX@BIT~K MXLea~K HX~sI@OOH 

HHQMN.~ CPU &ECOND OR~IN 

22edg.31 ~B@B~e~@5 MFZ e 
22eRR.31 ~e~8~.~@b LOD e 
2~e~.3~ ~ g d O ~ 2 9  USR e 
~B?~.$W ~ @ ? ~ q  LOP e 
~2 ,a~ ,35  ~0~e351 ~FZ e 
22 .=9.~7 ~O~eB~6I  MFZ, 

22~49.~0 00001~669 OSRp 

~ 2 p 4 9 , ~  ~O001~b~g US~ 
2 ~ g . 4 0  000~1eb7~ JOB~ 
2 ~ p ~ . 4 ~  000~l~b?g MFZ e 
2 2 p ~ q , ~  ~8~OI~bTl MFZ~ 

22e@R,~ ~OlebT~ MRZ e 
~2paR.40 OBBO~eb?~ MFZ e 
~2p~q,4r ~D~I tbT~ MRZp 
22p~g.4~ O~gO~e67~ ~FZ~ 
2~p~g.~U ~B~BI~b75 MFZ. 
22m~g.a8 00001~b7~ MFZ~ 
22,4~~ r MFZ. 

Dill KOFLN NOS/BEI.~ LEV. 5R~ ~X.BB.Ig@a 
.ARDBd,$TMFZ. 

ACEOuNT~A~02~****~. 
.FTN.UPTNd. 

, 2d |  CO @ECONO~ EOHPlLATI~N TIMF 

LObl~ - FL$ RE~tJI~Eh TO LOAD - B~1445  ~U.E~G 
LR~R~ - EXECUTION I~i lTIATE~ OS,EXP 

FORTRAN LIRRaRY 52~ 25/~5181 
~T~P 
l~b~OO FINAL EX~EUTI~N FL. 

1.3~7 CP ~E~DNO@ EXECUTION TIMe. 
-EXIT,S. 

MAX H~ 6 *aKW 
dMi6b - HaXIHUH USLR BCM |~b~O~B WnRP$ 
dM~&7 - MAXIMUM U~ER LEM 3d~OB #~RD8 
JM~To . ~IAXIMUM JS*10 LCM 17&B BUFFERS 
~CN 75,8q~ ~ 5  
LCII ~.7~2 KW$ 

USER 1 .a~t  SEC 
JOU 1.675 $~C 
~C~5~ - 0 ~ 0 6  SC/LC SWAPS 

PHPGRAM 15~  76/76 OPT=2 FTN ~ . ~ 5  

a5 

PPO~AM ISSp{nUTRUT.TaPESzUUTPUT) 
DIMENSION I$(5,1@e,I~O},EX(?) , INUMI[ I~J?NOR~{10~}  
DATa I S / 5 ~ O ~ * O / , I E N 1 / I I I I 1 1 1 I I I I t l I I ~ I I I I B /  
T=Iod7923 /~ .B2&bI3  ! LLa3 ~ CaLl Ra~IBFT(15 $ LmLL*20SLL 
O0 I I I I , L  $ INDMI[I)=I-I  

I I N D F ~ ( I ) ~ I * 1  
INDMI{I}=L $ ENOP~(L}=I 
DO 2 l = l , ?  
EXCI)IEWPC{aII.16)/T) 
DO 6 ITIME=I,6 $ M=e 
DO a K I I e L  $ KM| t INDMI(K}  $ KPI I~NDPl{K}  
O0 ~ J#laL $ JMIIINDMI{J} ~ JRI I INDRI(J I  
DO a I= I , LL  
I F ( I . ( Q . I )  ~OTO I0 $ IF( I .EO.L~) ~O?O I I  
I E h = I ~ ( I - I , J a K ) * I S { I * I , J , K )  ~ ~O?O i~ 

|~ I E N I ~ $ { 2 , J I K ] $ S H I F f { I S ( L L , J ~ K ) r 5 7 1  $ ~OTO 12 
$1 I E N = Z ~ { L L M I F J ~ K } * S M I F T ( I B { I ~ J . K ) ~ }  
I~ I E I = I $ { I , J , K )  

IEN~IEN*ICI*I$(I,JMI,K)*I$(I,JPI,K}+I~(T,J,~M~)*I~{I,d, 
IEN~Is 
ICH~@ $UO 3 I I=1 ,1 r  
I~HIBHIFT(ICH,3) $ IENp~H!FT{IEN,~) 
IF{R~NF{I I) .LE.EX{IEN.AND.?))  ICMII~H.O~.? 
~CHIBMIKT{ ICH~)  ! IENuBHTFT(T~N~]} 
~F{~ANF{II) .LE.[XtIEN,AND.T})ICM~ICM.OR.? 
ICI=I${ I ,J ,K}=XOR(ICI , ICH.AND.IENI)  
WRITE(5,5) M,ITIME 

5 FORMAT{212~) 
~TOR $ END 

0 

8 
0 
0 

uABOO~SO AF DC=,8 F$10~gl 

Fig. 2. A complete program which ran on our Cyber 76 to test computing times of multispin 
coding in three-dimensional Ising models up to 100 • 100 x 100. It does not calculate E and 
M since that should be done at the end only. 
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