
Journal of Statistical Physics, Vot, 28, No. 4, 1982

Monte Carlo Technique for Very Large Ising Models

C. Kalle I and V. Winke lmann 1

Received February 18, 1982

Rebbi's multispin coding technique is improved and applied to the kinetic Ising
model with size 600 * 600 * 600. We give the central part of our computer
program (for a CDC Cyber 76), which will be helpful also in a simulation of
smaller systems, and describe the other tricks necessary to go to large lattices.
The magnetization M at T = 1,4 * T c is found to decay asymptotically as
exp(- t/2.90) if t is measured in Monte Carlo steps per spin, and M (t = O) = 1
initially.

KEY WORDS: Monte Carlo; Glauber kinetic Ising model; Multispin cod-
ing; CDC computers.

1. RNTRODUCTION

The Ising magnet on a simple cubic lattice serves as a model for many
cooperative phenomena. Its simulation on a computer uses the Metropo-
lis Monte Carlo method, (1) usually with Glauber kinetics. (~) Rebbi and
co-workers (2) improved the efficiency of this computer simulation by
"multispin coding"; a complete program was published by Zorn et al., (2)
and was further improved by Ottavi and Chakrabarti et a/. (4) These latter
authors used it also for a simulation of large lattices up to 360. 360. 360.
The present work started from the program used in that paper, (4) reduced
its computer time by about 40%, and applied it to larger systems. Basically
we made a feasibility study only; the application to unsolved problems is
left for the future.

In CDC 6000 and 7000 series computers each memory unit ("word")
has 60 bits; in a (spin-I/2) Ising model, one bit is sufficient to represent a
single spin. Multispin coding allows three bits for every spin and thus

1 University of Cologne, Computing Center, Robert-Koch-Strasse 10, D-5000 Cologne 41,
West Germany.

0022-4715/82/0800-0639503.00/0 �9 1982 Plenum Publishing Corporation

640 Kalle and Winkelmann

makes it possible to count the number of antiparallel neighbor spins, from
zero to six in the simple cubic lattice, with these three bits. Thus 20 spins
(or 20 interaction energies) can be stored in one word and calculations for
these can be made with one word-oriented instruction. Therefore, com-
pared with conventional one-word-per-spin methods, O) the memory re-
quired is reduced by a factor of 20, the computer time by a factor of 2
(Zorn et al.(2)). Basically the program performs an exclusive-or operation
(XOR) between a word representing 20 spins and their neighbors; the result
gives in each of the 20 three-bit parcels the number of antiparallel neigh-
bors, (2) and thus the interaction energy. Thereafter each spin has to be
flipped separately according to the probability with a random number
(FORTRAN function RANF) distributed homogeneously between zero and
one. (For computers with 32-bit words, the advantages of multispin coding
are less drastic.)

In the following section we describe the tricks to speed up computation
in our CDC Cyber 76 M and include a list of that part of the program.
Section 3 describes how a hierarchy of three storage devices is used for the
simulation of systems larger than 100. 100.100. Section 4 gives and
discusses our results.

2. THE CENTRAL ALGORITHM

For each Monte Carlo step per spin, the computer program examines
regularly every spin with coordinates i, j , k and flips and checks if it should
be flipped (i, j , k = 1, 2 , . . . , L). The outermost loop with variable K is left
out in our program listing for simplicity (see Section 3), the second loop
(DO 1 J = 1, L) starts our program listing in Table I. As the reader may
see, periodic boundary conditions were employed. The innermost loop is
reduced to a loop over LL = L / 2 0 steps only, since in multispin coding we
will treat with H = I the 20 spins I = 1 , I + L L , I + 2 * L L 1+
19*LL, with H = 2 the 20 spins I = 2, 2 + LL, 2 + 2*LL 2 + 19*LL,
until finally with 11= L L we treat the 20 spins I = LL, 2*LL,
3*LL 20*LL(= L). The two statements after labels 10 and 11 incor-
porate the special cases H = I and H = LL, where the left or right
neighbors in the lattice row are not characterized by H _ 1 but have to be
formed by shift operations. O) Essentially we first calculate, apart from
differences due to periodic boundary conditions, the sum of the six neigh-
bors and the central spin:

IEN = I S (I I - 1 ,J ,K) + I S (I I + 1 , J ,K) + IS (I I , J - 1,K)

+ IS(I I , J + 1,K) + IS (I I , J , K - 1) + IS(I I , J , K + 1)

For reasons of programming technique we denote K + 1 and K - 1 by the

Monte Carlo Technique for Very Large Ising Models ~ 1

Table I. Central Part of Computer Program, Showing for One Sweep through
the Lattice the Loops in Two of Three Dimensions in the L , L �9 L Lattice a

D O 1 J = I , L
JP1 = J + 1 $ IF(JP1.GT.L) JP1 = 1
JM1 = J - 1 $ IF(JM1.EQ.0) JM1 = L
D O I I I = I , L L
IF(II.EQ.1) GOTO 10
IF(II.EQ.LL) GOTO 11
IEN = ISC(II + 1, J) + ISC(II - 1, J)
GOTO 12

10 CONTINUE
IEN = ISC(2, J) + SHIFT(ISC(LL, J), 57)
GOTO 12

11

12

C
C
C

2
C

C
1

CONTINUE
IEN = ISC(LLM 1, J) + SHIFT(ISC(1, J), 3)
ICI = ISC(H, J)
IEN = IEN + ISC(II, JM1) + ISC(II, JP1) +

IS(II, J, PLLCMU) + IS(II, J, PLLCML) + ICI
IEN = XOR(ICI.OR.SHIFT(ICI, 1).OR.SHIFT(ICI, 2), IEN) + IEN1
IEN COUNTS FOR THE 20 SPINS IN ICI HOW MANY OF THEIR
NEIGHBORS ARE ANTIPARALLEL TO THEM (EXCLUSIVE OR)
ICH MARKS THOSE SPINS WHICH HAVE TO BE FLIPPED
ICH = 0
D O 2 J I = 1,10
IF(RANF(J1).LE.EX(IEN.AND.7)) ICH = ICH.OR.7
ICH = SHIFT(ICH, 3)
IEN = SHIFT(IEN, 3)
IF(RANF(J1).LE.EX(IEN.AND.7)) ICH = ICH.OR.7
ICH = SHIFT(ICH, 3)
IEN = SHIFT(IEN, 3)
SHIFT PRODUCES A CIRCULAR SHIFT TO THE LEFT BY 3 BITS
ICI = ISC(II, J) = XOR(ICI, ICH.AND.IEN1)
M = M + COUNT(ICI)
COUNT COUNTS THE N U M B E R OF SET BITS IN A C OMPUTER W O R D
CONTINUE

a RANF is a random number generator and EX(n) the probability to flip a spin if n - 1 of
its neighbors are antiparallel. Basically, PLLCMU = K - 1 and PLLCML = K + 1 if the
investigated plane K is stored in ISC(H, J) . This part can be applied to smaller systems, at
least L = 60. IEN1 adds unity to every 3-bit parcel.

i n t e g e r " p l a n e - i n - l a r g e - c o r e - m e m o r y (L C M) " v a r i a b l e s P L L C M L a n d

P L L C M U (s e e S e c t i o n I I I) , a n d w e s t o r e c e n t r a l p l a n e K a l s o i n s m a l l - c o r e -

m e m o r y , t h e u s u a l w o r k i n g s t o r a g e , a s a c o p y o f t h e p l a n e K r e s i d e n t i n

L C M , s u c h a s w e c a n r e f e r e n c e IS(H,J,K) b y I S C (H , J) . I C I is a n

a b b r e v i a t i o n (3~ f o r IS(II, J, K).

642 Kalle and Wlnkelmann

The crucial statement

IEN = XOR(ICI.OR.SHIFT(ICI, 1).OR.SHIFT(ICI, 2), IEN) + IEN1

gives in every 3-bit group the number of antiparallel neighbors of the
central spin in ICI, as the reader may check in an example. [The two
"OR"-operations give 111 for every up spin (001) and 000 for every down
spin (000).] This method works if each spin interacts with six neighbors and
has to be modified for different numbers of interacting neighbors. The
addition of IEN1 to this result adds unity to every number of antiparallel
neighbors; this IEN1 has 001 in each of its 20 3-bit parcels. Earlier
work (2-4) used an XOR operation for each of the six directions of interac-
tion, which is less effective.

The statements "IF (RANF(J1).LE.EX(IEN.AND.7)) ICH = ICH.
OR.7" will result in ORing a 7 (= 111) to the changer word ICH if the spin
has to be flipped, and a 000 otherwise. Since the number of hardware
registers in the computer is exhausted by this loop construction, it was not
useful to mark spins to be flipped by an additional constant 1 (= 001),
which would be more convenient for the flip process. In contrast to earlier
work [2-4], we investigated two spins during one trip of loop labeled 2,
since the small number of instructions allows the loop still to reside in the
Cyber 76 instruction stack. In order to get a feeling for the time consumed
in this loop, the reader may consider that each machine instruction in this
innermost loop will be executed 216.000.000 times for each Monte Carlo
step per spin (600* 600* 600 system). The cycle time of a Cyber 76
computer is 27.5 nsec, thus to save one cycle's time in this loop means
saving 5.8 sec per Monte Carlo step. So we took great care to optimize the
code of this loop. Thereafter the statement ICI = XOR (ICI, ICH.
AND.IEN1) produces the changed spin word; and finally M = M +
COUNT(ICI) counts the number of spins 001 in the changed configuration
and so gives the magnetization more simply than in earlier versions.

We found that in our test runs for 240**3 the CPU time for one
Monte Carlo step was reduced to 14 sec compared with 22 sec in the
program of Chakrabarti et a/. (4) given to us. For the 600**3 system we
needed less than 230 sec for one sweep through the lattice. Another factor
of 3 can be gained in speed if one takes e x p (- 4 J / k B T) = 1//2 correspond-
ing to T / / T c = 1.279 and treats 20 spin flips simultaneously (5) .

3. HIERARCHY OF MEMORIES FOR VERY LARGE SYSTEMS

Chakrabarti et a/. (4) used already disk storage to store larger systems
up to 360**3, with test runs up to 600**3. Information to and from the disk

Monte Carlo Technique for Very Large Islng Models 643

storage can be transferred asynchronously by the FORTRAN " B U F F E R IN"
a n d " B U F F E R OUT" statements; using this method a program may
perform computation and input /output at the same time. We corrected an
error in the given program (4), due to which parts of the boundary spins
were always down, and further refined the method.

We used the three available types of memory in a strongly hierarchical
way: SCM, the small-core memory; LCM, the large-core memory; and
RMS, the disk storage system. As mentioned above, the plane K is stored
with dimension ISC(LL, L) in SCM, this plane K, its neighbors K + 2,
K + 1, K - 1 and the first plane K = 1 are stored in direct access LCM
("LEVEL 2") in the area IS(LL, L, 5). Information between SCM and
LCM was transferred by the fastest possible method, the block copy
(FORTRAN "MOVLEV" routine). The third index n of IS(H,J,n) was
denoted as n = PLSCM for the central plane K, as n = PLLCMU for the
upper neighbor plane K - 1, n = PLLCML for the lower neighbor plane
K + 1, and n = PLLCMI for the input plane K + 2 read in from disk
storage.

At this point, it may be interesting to the reader, in order to under-
stand the following, to learn a little about single-word access to LCM in the
Cyber 76 computer.

If a program references a word in LCM this and the following 15
words are read from core into a hardware register. Successive references to
words following that word are satisfied from that register, which is quite
fast. So only every 16 times a real storage access is required, if consecutive
words are read using single-word access to LCM. This is the clue to make
LCM access fast. Since the minimum LCM configuration consists of two
banks of LCM, each having such a hardware register, this configuration is
presently available at the Cologne Cyber 76, the only possibility to use
LCM in the fastest way is to read the PLLCML plane using one bank and
to read the PLLCMU plane using the other bank. Thus computation time
is optimal if the product of LL = L/20 and L is an odd multiple of 16,
allowing L = 200, 280, 360, 440, 520, 600, and 680 for the Cologne
configuration. (L = 120 and smaller systems can be computed without
RMS usage.)

All L planes are stored on RMS, accessed by " B U F F E R IN" and
"B U F F E R OUT" statements. We did not test if we could fit 680**3 into
the disk storage system under normal multiuser conditions; for 600**3 we
consumed already nearly one fifth of the total available RMS space, that is
about 20 million (60-bit) words. (One may save memory by a factor of 3,
losing in speed by a factor of 1.6, if one compresses three 20-spin words
into one before storing them on the disk. Only test runs were made,

644 Kalle and Winkelmann

however. (5)) It is not sufficient to store only the planes K - 1 and K + 1 in
LCM, because, as we mentioned above, we want to do asynchronous
input/output , so during the time the lowest plane K + 2 is read in from
RMS by " B U F F E R IN," the plane K + 1 is already needed for computa-
tion, and during the time the uppermost plane K - 1 is output to RMS, its
LCM storage can be used by spins of the upper plane. Table III explains
this usage of plane indices. Effectively three processes are done at a time:
input of a new plane, computation, and output of an already newly
computed plane.

When we have investigated one plane, we move to the lower neighbor-
ing plane not by shifting the spins IS(H, J, n) within storage but merely by
rotating the pointers (third index n), e.g., setting PLSCM = PLLCML. If
these variables are set up as P L L C M U - - 4 , PLSCM = 2, PLLCML = 1,
and PLLCMI = 3 the single-word access to LCM via the two banks is used
best. Table II indicates schematically the way the information is shifted
between memories. Additional statements are required for the special cases
K - - 1 , K - - L - 1 , K - - L , K = L + 1 and during the first Monte Carlo
sweep through the lattice. After each such Monte Carlo step per spin, the
magnetization (M- L**3/2)/L**3 is printed along with other useful
information.

To protect the computation against a breakdown of the computer, the
(very limited) output was also printed on the dayfile (which is usually not
lost), and the RMS information was saved for later reuse. Thus we could

Table II. Schematic Listing of Storage Handling Statements

M = - L3/2
D O 8 K = 1, L
CALL MOVLEV(IS(I, 1, PLSCM), ISC(1, 1), LLL)

Computat ion as in Table I

C
CALL MOVLEV(ISC(1, 1), IS(I, 1, PLSCM), LLL)

MOVE SCM PLANE BACK TO LCM
SCRATCH = P L L C M U
PLSCM = PLLCML
PLSAVEI = PLLCMI
PLLCML = PLONE
PLLCMI = SCRATCH
B U F F E R O U T (OTAPE, 1) (IS(l, 1, PLLCMU), IS(LL, L, PLLCMU))
B U F F E R I N (ITAPE, 1) (IS(l, 1, PLLCMI), IS(LL, L, PLLCMI))
C O N T I N U E

Monte Carlo Technique for Very Large Ising Models

Table III. Sketch of Plane Index Usage for Asynchronous Disk Input/Output
during Computation

Disk storage

Disk storage

PLLCMU (output)

PLSCM (used in SCM)

PLLCML

PLLCMI (input)

645

stretch the calculation over an extended period of time, and were not
forced to compute all steps during one long run. No special arrangements
with the general operating system were necessary, our program ran under
usual conditions, as did numerous other programs at that time.

4. R E S U L T S

Figure 1 shows that the magnetization after t Monte Carlo steps per
spin at a temperature 40% above the critical temperature. We see that the
magnetization decays for large t as e x p (- t/~') with ~- = 2.90, until finally
fluctuations take over. This decay is seen here much better than in Ref. 4,
either due to an unfortunate fluctuation there or due to the above-
mentioned programming error in Ref. 4. For small times, deviations occur
as expected. For the initial slope - dM/dt [at t = 0, M(t = 0) = 1] is equal
to the probability of flipping one spin down when all neighbor spins are up.
That probability remains finite at the critical temperature whereas 1/-r
vanishes there (4) . [The flip probability was taken as

e-flag~(1 + e -Bae)

where fl = 1/kaT and AE is the energy change of the flip.]
Thus we have simulated the decay of magnetization in a very large

Ising lattice on a general-purpose computer under normal operating condi-
tions, using less than four minutes central processor time for every Monte
Carlo step per spin in a 600*600*600 lattice. While we used many features
special to large CDC computers, the whole program was written in FOR-
TI~N. It remains to be seen what new results can be obtained from large
systems; for this purpose we can send our complete program (200 state-
ments) to the interested reader.

4

O
.

4-
+

4
-

[/
3

Z

-

O
P

-
O

'
J

+

+
4"

+
+

 +
+

+
4

 +

S
Y

S
Z

K
X

A

I
8

t
00

I

~
I

I
I

I
I

0 I
]

I
I

I
I

1
6

,0
0

2

4
0

0

3
2

.0
0

4

.0
0

4

8
.0

0

5
6

0

0

T
I
M
E

3
9

0

3

5-

f
I

81

I
4

.
O
0

O
0

T

+

I
'1

I
I

1
2

O

0
1

6

O
0

T
IM

E

S
Y
S
T

H

+
+

-+

*
+

B
I

I
i

I
I

I
2
0

O
0

2
4
,
0
0

2
8

O
0

Fi
g.

1.

D

ec
ay

 o
f

m
ag

ne
ti

za
ti

on

as
 f

un
ct

io
n

of
 t

im
e

t
(=

 n
um

be
r

of
 M

on
te

C

ar
lo

 s
te

ps
 p

er
 s

pi
n)

,
fo

r
36

0*
*3

 a
nd

 6
00

**
3

Is
in

g
m

od
el

s
at

 T
/T

 c
 =

1.

4.

In
 b

ot
h

fi
gu

re
s

w
e

gi
ve

 t
he

 n
at

ur
al

 l
og

ar
it

hm
,

no
t

th
e

de
ca

di
c

on
e.

ABle,SO AF DC.4~ F~.~@~I
I I I I l l I I I i I I I I l I I I l l l

I I I I I I I I I I I I I I I I
I I I I I I I I I I 31 I I ?I

I I I I l l l l I l l I I I I I I I I
I I I I Tl Tl I I II ~I I I
I I I I I I I l I I I I ?I I I I I I I
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I r l I I
IZ I I I I I I I I I I I l l l l I l l / i f

I ? I T I I I I I T I T i I I I I I
I I I I I I I I I I I

I I I I TI I l l
f i l l I I I I I l Tl I I I

?I I I I I IT I I
11 II III Tl

TI ?I / IT TI
TI TI 15 I I I
T Z I I T I I l I Y I I I r ~ T I I I T

UKLN 5COPE ~ . | ; 5 LVL 5]Jaa . 28/0910~ 2 1 . R 7 . I a . . ~ A t O P t ~ ~2~}5

SYS OLYIC~S e~41 71P~ F~5~377k FLLI~B~eK HX@BIT~K MXLea~K HX~sI@OOH

HHQMN.~ CPU &ECOND OR~IN

22edg.31 ~B@B~e~@5 MFZ e
22eRR.31 ~e~8~.~@b LOD e
2~e~.3~ ~ g d O ~ 2 9 USR e
~B?~.$W ~ @ ? ~ q LOP e
~2 ,a~ ,35 ~0~e351 ~FZ e
22 .=9.~7 ~O~eB~6I MFZ,

22~49.~0 00001~669 OSRp

~ 2 p 4 9 , ~ ~O001~b~g US~
2 ~ g . 4 0 000~1eb7~ JOB~
2 ~ p ~ . 4 ~ 000~l~b?g MFZ e
2 2 p ~ q , ~ ~8~OI~bTl MFZ~

22e@R,~ ~OlebT~ MRZ e
~2paR.40 OBBO~eb?~ MFZ e
~2p~q,4r ~D~I tbT~ MRZp
22p~g.4~ O~gO~e67~ ~FZ~
2~p~g.~U ~B~BI~b75 MFZ.
22m~g.a8 00001~b7~ MFZ~
22,4~~ r MFZ.

Dill KOFLN NOS/BEI.~ LEV. 5R~ ~X.BB.Ig@a
.ARDBd,$TMFZ.

ACEOuNT~A~02~****~.
.FTN.UPTNd.

, 2d | CO @ECONO~ EOHPlLATI~N TIMF

LObl~ - FL$ RE~tJI~Eh TO LOAD - B~1445 ~U.E~G
LR~R~ - EXECUTION I~i lTIATE~ OS,EXP

FORTRAN LIRRaRY 52~ 25/~5181
~T~P
l~b~OO FINAL EX~EUTI~N FL.

1.3~7 CP ~E~DNO@ EXECUTION TIMe.
-EXIT,S.

MAX H~ 6 *aKW
dMi6b - HaXIHUH USLR BCM |~b~O~B WnRP$
dM~&7 - MAXIMUM U~ER LEM 3d~OB #~RD8
JM~To . ~IAXIMUM JS*10 LCM 17&B BUFFERS
~CN 75,8q~ ~ 5
LCII ~.7~2 KW$

USER 1 .a~t SEC
JOU 1.675 $~C
~C~5~ - 0 ~ 0 6 SC/LC SWAPS

PHPGRAM 15~ 76/76 OPT=2 FTN ~ . ~ 5

a5

PPO~AM ISSp{nUTRUT.TaPESzUUTPUT)
DIMENSION I$(5,1@e,I~O},EX(?) , INUMI[I~J?NOR~{10~}
DATa I S / 5 ~ O ~ * O / , I E N 1 / I I I I 1 1 1 I I I I t l I I ~ I I I I B /
T=Iod7923 /~ .B2&bI3 ! LLa3 ~ CaLl Ra~IBFT(15 $ LmLL*20SLL
O0 I I I I , L $ INDMI[I)=I-I

I I N D F ~ (I) ~ I * 1
INDMI{I}=L $ ENOP~(L}=I
DO 2 l = l , ?
EXCI)IEWPC{aII.16)/T)
DO 6 ITIME=I,6 $ M=e
DO a K I I e L $ KM| t INDMI(K} $ KPI I~NDPl{K}
O0 ~ J#laL $ JMIIINDMI{J} ~ JRI I INDRI(J I
DO a I= I , LL
I F (I . (Q . I) ~OTO I0 $ IF(I .EO.L~) ~O?O I I
I E h = I ~ (I - I , J a K) * I S { I * I , J , K) ~ ~O?O i~

|~ I E N I ~ $ { 2 , J I K] $ S H I F f { I S (L L , J ~ K) r 5 7 1 $ ~OTO 12
$1 I E N = Z ~ { L L M I F J ~ K } * S M I F T (I B { I ~ J . K) ~ }
I~ I E I = I $ { I , J , K)

IEN~IEN*ICI*I$(I,JMI,K)*I$(I,JPI,K}+I~(T,J,~M~)*I~{I,d,
IEN~Is
ICH~@ $UO 3 I I=1 ,1 r
I~HIBHIFT(ICH,3) $ IENp~H!FT{IEN,~)
IF{R~NF{I I) .LE.EX{IEN.AND.?)) ICMII~H.O~.?
~CHIBMIKT{ ICH~) ! IENuBHTFT(T~N~]}
~F{~ANF{II) .LE.[XtIEN,AND.T})ICM~ICM.OR.?
ICI=I${ I ,J ,K}=XOR(ICI , ICH.AND.IENI)
WRITE(5,5) M,ITIME

5 FORMAT{212~)
~TOR $ END

0

8
0
0

uABOO~SO AF DC=,8 F$10~gl

Fig. 2. A complete program which ran on our Cyber 76 to test computing times of multispin
coding in three-dimensional Ising models up to 100 • 100 x 100. It does not calculate E and
M since that should be done at the end only.

648 Kalle and Winkelmann

ACKNOWLEDGMENTS

We thank D. Stauffer for suggestions and help with the manuscript,
and H. G. Baumgaerte! for a copy of his computer program of Ref. 4.

REFERENCES

1. K. Binder, Monte Carlo Methods in Statistical Physics (Springer Verlag, Heidelberg, 1979).
2. M. Creutz, L. Jacobs, and C. Rebbi, Phys. Rev. Lett. 42:1390 (1979); R. Zorn, H. J.

Herrmann, and C. Rebbi, Computer Phys. Commun. 23:337 (1981); See also R. Friedberg
and J. E. Cameron, J. Chem. Phys. 52:6049 (1970).

3. H. Ottavi, Z. Phys. B 44:203 (1981).
4. B. K. Chakrabarti, H. G. Baumgaertel, and D. Stauffer, Z. Phys. B 44:333 (1981).
5. D. Stauffer, Private Communication.

